Five-fold symmetry in crystalline quasicrystal lattices.
نویسندگان
چکیده
To demonstrate that crystallographic methods can be applied to index and interpret diffraction patterns from well-ordered quasicrystals that display non-crystallographic 5-fold symmetry, we have characterized the properties of a series of periodic two-dimensional lattices built from pentagons, called Fibonacci pentilings, which resemble aperiodic Penrose tilings. The computed diffraction patterns from periodic pentilings with moderate size unit cells show decagonal symmetry and are virtually indistinguishable from that of the infinite aperiodic pentiling. We identify the vertices and centers of the pentagons forming the pentiling with the positions of transition metal atoms projected on the plane perpendicular to the decagonal axis of quasicrystals whose structure is related to crystalline eta phase alloys. The characteristic length scale of the pentiling lattices, evident from the Patterson (autocorrelation) function, is approximately tau 2 times the pentagon edge length, where tau is the golden ratio. Within this distance there are a finite number of local atomic motifs whose structure can be crystallographically refined against the experimentally measured diffraction data.
منابع مشابه
A new method to generate quasicrystalline structures : examples in 2D tilings
2014 We present a new algorithm for the generation of quasicrystalline structures. It is related to the cut and projection method, but allows a direct generation of the structure in the « physical » space E. The orthogonal space site selection is replaced by a direct check in a periodic array of « acceptance » regions in E. This method shows that there is a sort of underlying crystalline lattic...
متن کاملReal-space observation of magnetic excitations and avalanche behavior in artificial quasicrystal lattices
Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lat...
متن کاملCoincidence of reciprocal lattice planes model for quasicrystal-crystal epitaxy
A coincidence of reciprocal lattice planes model was developed to calculate the interfacial energy in quasicrystal-crystal epitaxy. This model allows a quantitative description of the interface as opposed to previously employed qualitative models that consider symmetry relations and alignment of rotation axes. Computations were carried out on several types of quasicrystal-crystal systems, namel...
متن کاملRegular Polytopes, Root Lattices, and Quasicrystals*
The icosahedral quasicrystals of five-fold symmetry in two, three, and four dimensions are related to the corresponding regular polytopes exhibiting five-fold symmetry, namely the regular pentagon (H2 reflection group), the regular icosahedron 3,5 (H3 reflection group), and the regular four-dimensional polytope 3,3,5 (H4 reflection group). These quasicrystals exhibiting five-fold symmetry can b...
متن کاملQuasicrystals in a monodisperse system.
We investigate the formation of a two-dimensional quasicrystal in a monodisperse system, using molecular dynamics simulations of hard-sphere particles interacting via a two-dimensional square-well potential. We find that more than one stable crystalline phase can form for certain values of the square-well parameters. Quenching the liquid phase at a very low temperature, we obtain an amorphous p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 25 شماره
صفحات -
تاریخ انتشار 1996